M2DGR

M2DGR: a Multi-modal and Multi-scenario SLAM Dataset for Ground Robots [RA-L & ICRA2022]

💎 First Author: [**Jie Yin 殷杰**](https://sjtuyinjie.github.io/)   📝 [[Paper]](https://arxiv.org/abs/2112.13659)   ➡️ [[Dataset Extension]](https://github.com/SJTU-ViSYS/M2DGR-plus)   ⭐️[[Presentation Video]](https://www.youtube.com/watch?v=73enWUwxJ1k)   🔥[[News]](https://mp.weixin.qq.com/s/J6872xPeBHaxl39jbsHYxg) [![Author](https://img.shields.io/badge/Author-Jie%20Yin-blue)](https://sjtuyinjie.github.io/) [![Paper](https://img.shields.io/badge/Paper-M2DGR-yellow)](https://ieeexplore.ieee.org/abstract/document/9664374) [![Preprint](https://img.shields.io/badge/Preprint-Arxiv-purple)](https://arxiv.org/abs/2112.13659/) [![Dataset](https://img.shields.io/badge/DatasetExtension-M2DGR+%2B-green)](https://github.com/SJTU-ViSYS/M2DGR-plus) [![License](https://img.shields.io/badge/License-MIT-cyan)]() [![Video](https://img.shields.io/badge/Video-red)](https://www.youtube.com/watch?v=73enWUwxJ1k) [![News](https://img.shields.io/badge/News-orange)](https://mp.weixin.qq.com/s/J6872xPeBHaxl39jbsHYx) [![stars](https://img.shields.io/github/stars/SJTU-ViSYS/M2DGR.svg)](https://github.com/SJTU-ViSYS/M2DGR) [![forks](https://img.shields.io/github/forks/SJTU-ViSYS/M2DGR.svg)](https://github.com/SJTU-ViSYS/M2DGR) [![open issues](https://img.shields.io/github/issues-raw/SJTU-ViSYS/M2DGR)](https://github.com/SJTU-ViSYS/M2DGR/issues) [![issue resolution](https://img.shields.io/github/issues-closed-raw/SJTU-ViSYS/M2DGR)](https://github.com/SJTU-ViSYS/M2DGR/issues)

Figure 1. Sample Images

🎯 Notice

We strongly recommend that the newly proposed SLAM algorithm be tested on our M2DGR / M2DGR-plus / Ground-Challenge / SJTU-GVI benchmark, because our data has following features:

  1. Rich sensory information including vision, lidar, IMU, GNSS,event, thermal-infrared images and so on
  2. Various scenarios in real-world environments including lifts, streets, rooms, halls and so on.
  3. Our dataset brings great challenge to existing cutting-edge SLAM algorithms including LIO-SAM and ORB-SLAM3. If your proposed algorihm outperforms these SOTA systems on our benchmark, your paper will be much more convincing and valuable.
  4. 🔥 Extensive excellent open-source projects have been built or evaluated on M2DGR/M2DGE-plus so far, for examples, Ground-Fusion, LVI-SAM-Easyused, SI-LIO, MM-LINS, Log-LIO, LIGO, Swarm-SLAM, VoxelMap++, GRIL-Cali, LINK3d, i-Octree, LIO-EKF, Fast-LIO ROS2, HC-LIO, LIO-RF, PIN-SLAM, LOG-LIO2, Section-LIO, I2EKF-LO, Liloc, BMBL, Light-LOAM and so on!

Table of Contents

  1. 🚩 News & Updates
  2. Introduction
  3. License
  4. Sensor Setup
  5. ⭐️ Dataset Sequences
  6. 📝 Configuration Files
  7. Development Toolkits
  8. Star History
  9. Acknowledgement

[!TIP] Check the table of contents above for a quick overview. And check the below news for lateset updates, especially the list of projects based on M2DGR.

News & Updates

>LVI-SAM on M2DGR

[!NOTE] If you build your open-source project based on M2DGR or test a cutting-edge SLAM system on M2DGR, please write a issue to remind me of updating your contributions.

INTRODUCTION

ABSTRACT:

We introduce M2DGR: a novel large-scale dataset collected by a ground robot with a full sensor-suite including six fish-eye and one sky-pointing RGB cameras, an infrared camera, an event camera, a Visual-Inertial Sensor (VI-sensor), an inertial measurement unit (IMU), a LiDAR, a consumer-grade Global Navigation Satellite System (GNSS) receiver and a GNSS-IMU navigation system with real-time kinematic (RTK) signals. All those sensors were well-calibrated and synchronized, and their data were recorded simultaneously. The ground truth trajectories were obtained by the motion capture device, a laser 3D tracker, and an RTK receiver. The dataset comprises 36 sequences (about 1TB) captured in diverse scenarios including both indoor and outdoor environments. We evaluate state-of-the-art SLAM algorithms on M2DGR. Results show that existing solutions perform poorly in some scenarios. For the benefit of the research community, we make the dataset and tools public.

Keywords:Dataset, Multi-model, Multi-scenario,Ground Robot

MAIN CONTRIBUTIONS:

VIDEO

ICRA2022 Presentation

For Chinese users, try bilibili

LICENSE

This work is licensed under MIT license. International License and is provided for academic purpose. If you are interested in our project for commercial purposes, please contact us on robot_yinjie@outlook.com for further communication.

If you face any problem when using this dataset, feel free to propose an issue. And if you find our dataset helpful in your research, simply give this project a star. If you use M2DGR in an academic work, please cite:

@article{yin2021m2dgr,
  title={M2dgr: A multi-sensor and multi-scenario slam dataset for ground robots},
  author={Yin, Jie and Li, Ang and Li, Tao and Yu, Wenxian and Zou, Danping},
  journal={IEEE Robotics and Automation Letters},
  volume={7},
  number={2},
  pages={2266--2273},
  year={2021},
  publisher={IEEE}
}
@article{yin2024ground,
  title={Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases},
  author={Yin, Jie and Li, Ang and Xi, Wei and Yu, Wenxian and Zou, Danping},
  journal={arXiv preprint arXiv:2402.14308},
  year={2024}
}

SENSOR SETUP

Acquisition Platform

Physical drawings and schematics of the ground robot is given below. The unit of the figures is centimeter.

Figure 2. The GAEA Ground Robot Equipped with a Full Sensor Suite.The directions of the sensors are marked in different colors,red for X,green for Y and blue for Z.

Sensor parameters

All the sensors and track devices and their most important parameters are listed as below:

The rostopics of our rosbag sequences are listed as follows:

DATASET SEQUENCES

We make public ALL THE SEQUENCES with their GT now.

Figure 3. A sample video with fish-eye image(both forward-looking and sky-pointing),perspective image,thermal-infrared image,event image and lidar odometry

An overview of M2DGR is given in the table below: Scenario|Street|Circle|Gate|Walk|Hall|Door|Lift|Room|Roomdark|TOTAL –|:–|:–:|–:|–:|–:|–:|–:|–:|–:|–: Number | 10|2|3|1|5|2|4|3|6|36 Size/GB|590.7|50.6| 65.9|21.5| 117.4 |46.0|112.1|45.3|171.1|1220.6 Duration/s |7958 | 478| 782 |291 |1226|588|1224|275|866|13688 Dist/m |7727.72| 618.03| 248.40|263.17|845.15|200.14|266.27|144.13|395.66|10708.67 Ground Truth |RTK/INS |RTK/INS |RTK/INS |RTK/INS |Leica |Leica |Leica |Mocap|Mocap| —

Outdoors

Figure 4. Outdoor Sequences:all trajectories are mapped in different colors.

Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: gate_01|2021-07-31|16.4g|172s|dark,around gate|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ET3mU1rvdTpEl8VYvC25q7YB5pmPQlwru0jBbQ9iu0oAMA?e=LrKUpJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfipLVtlRChHvwklkDPylPgBSIQry0_JdfqH-6DaxWCaNA?e=idVsY4) gate_02|2021-07-31|27.3g|327s|dark,loop back|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EY7fHSh4NnxBvemze1JS8TEBy5beLh_xlJ6mdi2IYmeY9w?e=xIcvDe)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETaXuADPMrNKlFn6pI9aqeoBmcgHr86fIsvDBB6cSaTBLA?e=gzaHPW) gate_03|2021-08-04|21.9g|283s|day|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUthdjvVIVdFmFxR82jzVqUBQTpsfvvb26pYtb0yj-_hlw?e=6MWwmJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETj90pEu4PBDpYIoI0nWEAMBiWU68VXMXpU7MKwWnpdXxA?e=1KLdX3) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: Circle_01|2021-08-03|23.3g|234s|Circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUVwex_LapBFrWV4ZtXocoYBE29aoQkPVdwWGhSFcioEtQ?e=YRRV9L)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EUlLxD27cGFArKGnpwkGrgEBr9FVGaSojLGVhJSNKaLLqQ?e=Bkptlj) Circle_02|2021-08-07|27.3g|244s|Circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EeVG96IFCfxDlDLH8xefa3EBEMjCm4_8__V8JZ4ivMGoww?e=FVgjhB)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfVe45nxzepBsZSFp-yzqRMBpg_PYdZVS1L3FOYqA8WdcA?e=5BcVrA) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: street_01|2021-08-06|75.8g|1028s|street and buildings,night,zigzag,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EavjoipiTMRIjUvmodSGGsoB8rg0_pOkp6pqDScr8h4zvQ?e=OjtWkL)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ES2todVoF5VGmLo8WwKxcRYB4nyw6-zNR86I4BxAPnv_wg?e=ZtalWi) street_02|2021-08-03|83.2g|1227s|day,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQj5QBBHONpFj-hlvXOQBr0BM0NP9nhNuw-X9UtwOMMuNw?e=ZrxudN)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfOmlQh5BvJAorfLiI7orFgBJRR94rEjU163lvWgLAlA2Q?e=Z7mAcd) street_03|2021-08-06|21.3g|354s|night,back and fourth,full speed|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQU95R6TOAZIkaoFuHJLU-kB9qJEIDeEsECB3Gjc9Nmx8A?e=J1AKwY)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQ4l4FNo69dPjWco2Pk8Zy4BuPWTFUGQHOv2KdO4MbTv2g?e=ZZf9ok) street_04|2021-08-03|48.7g|858s|night,around lawn,loop back|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ea72BxSXFYhDrp_FGNlJ2ukBx3CQSlv0Wah5nFUJtIntrw?e=4rwi7H)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EadWM6nH74hBusYGre63WRcB0fM_ynkFJu2ibpSWtr5P-w?e=K7FJzV) street_05|2021-08-04|27.4g|469s|night,staight line|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUClV6vL2zhAicOwwO1WiroBK-fPzTu8K8NtMfgdMAxIqw?e=r50mNo)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYrYgnp716xKo0-wcyVX2Z4BTnbbZuQrwYgaJIzREs923Q?e=gcGt7I) street_06|2021-08-04|35.0g|494s|night,one turn|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZ4HAXvNQXRCgRKSLpE3yX0BsM24PkXwAd-NopVc7ueNzA?e=oUw91h)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETFW7vEEmp9JvJiVZef0wooBN9r7mt8jj1WmVdzzNiIp7A?e=67FHW4) street_07|2021-08-06|77.2g|929s|dawn,zigzag,sharp turns|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfScTXrKjAdGg1w9xZ-yZgIBWu9gIswakQToN9guMPatQQ?e=YvjAUg)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EefcYHlgA-RJiTl1jZl9r4ABr2YcrmTX7InDG_W6cHHrFQ?e=NQB203) street_08|2021-08-06|31.2g|491s|night,loop back,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EdgojePkM2ZNszS6JM80D90B-2q68wWQ1vZijzeaH-IQrw?e=iwVIiX)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ecv4IRMW5rBPn22pxW-xEYQBGinyVxrP6htbpS3HGnOpiA?e=TJXzJz) street_09|2021-08-07|83.2g|907s|day,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ee5hiGAdou5OvPI_xeOHBh4BtRntB8-5qLXqCuXhXNB-Yw?e=wEkptw)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EXb__m3Z0wdLkv_ybnXDOlUBVV41XM8_G1yHNO9oZKJE1w?e=xaZBGo) street_010|2021-08-07|86.2g|910s|day,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfcpNeq8p-NLp7kCkaz0WugBf1c9TGtDbVBDy2QHF5rPvQ?e=lpnnAJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETWkYfjfaP5PuMUJmbHsLS0Btby-9W7V9n4bfob9DGP-pw?e=iOGOBW) walk_01|2021-08-04|21.5g|291s|day,back and fourth|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZn2REI4E2BLurJXTaTDpYcBIMOoO3CKh9dsPbcMeMYTKg?e=R4cSKy)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfNamQlwIeRGl0-gjktD1UEBMpXSWScVLL7VL1WUPiInhw?e=zmbJNp)

Indoors

Figure 5. Lift Sequences:The robot hang around a hall on the first floor and then went to the second floor by lift.A laser scanner track the trajectory outside the lift

Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: lift_01|2021-08-04|18.4g|225s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZp-yCPxrxNBg5cM_aWualABVCNktGm29u0RA2UGVmyp2Q?e=BChvEN)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQkO6B_IDPtItavRTjwedkoBQDUc6vV2jqtkOsmnWL7lhw?e=dDNVaE) lift_02|2021-08-04|43.6g|488s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfXP5V6Yi3tEvQL-Gbaq4QcBEVNxqacC-tltlzYnFnW7zQ?e=vgyEzS)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EX9iTyrQjWpKu9dI0Vx9uUkBAeLjUuU-PwUVT4yl1Tit1Q?e=toxiWg) lift_03|2021-08-15|22.3g|252s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWWG7OgCmTpIj_VZixYTkzsBew8ONoMrI13acbZ_8svV3g?e=1OVDYA)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQgymOgmbiVDt8NPcb-HiYoBUKkfzJZeJnKZdOvAXMgWtA?e=mzM6kq) lift_04|2021-08-15|27.8g|299s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ETrPaBIVaV1EtTVUG9effPIBK1LiJ3pGK93jAdhLZU_Pjg?e=ekVtWl)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYgfjuI3fZ9AsjGH1jKwwqcBlXsaRaEZ9TS8Y1VHlTpyCw?e=0fMc5n) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: hall_01|2021-08-01|29.1g|351s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWQ2bcxWRgZLtK_eSIgnNmoB_ozAyXeEU_MmlVqPZeiB7Q?e=BKghlK)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYxqt8qdK2hCgzW7qoQQWEIBvWgJAC7rotStNWxiEXDigg?e=lJabX7) hall_02|2021-08-08|15.0g|128s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EaAEMKhvsgJCn0bSvlNOENkB-jVOOH4gxrxATSCbwPdUng?e=xCXoXE)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EWybRtZdpVhBtfPbB4PlvigBNXjgmp8PzHbcMBqUA2ivhA?e=WRoQN9) hall_03|2021-08-08|20.5g|164s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWyFq_niW4xIkk9pg2tLVfMBfT9JaC0ZUa0CogD6sND6Ew?e=ODUNxq)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EVL6pWtJ0yVNgDkZLYonkrMBcVAVN8pO2F5Kdh5tSh9fdg?e=nGDMba) hall_04|2021-08-15|17.7g|181s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EV0oYa2MNi1HqmhvCM1pbboBAqQlij03bPifdyd_cqZUDA?e=P56O61)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EUrqpdjawd9HgF7aVQxYL_cBKIye_pFquj3tobdSnj_H2w?e=iAEG0u) hall_05|2021-08-15|35.1g|402s|circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQRFrzmO2BxFmeAZV_ifTpsBJjdIM7XjQAnmnuDdhE9-Vg?e=WDZwUt)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfuK4fEcs0JEtXGNWjEVI9UB9qHZjd7Y4WAs9XLZgmA4hQ?e=zQrXDW)

Figure 6. Room Sequences:under a Motion-capture system with twelve cameras.

Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: room_01|2021-07-30|14.0g|72s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfG372xf9h9Dl0xjm5XcDgoB7JP0SsWJfAfpfO2CU-QOmw?e=XINjaC)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ER6DA9bugPZNphRXA-zT_8QB4Hj0r0564NXknXHrlWuEcg?e=SlLMZM) room_02|2021-07-30|15.2g|75s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EaVK6tu2gs5NnOpAhhWrTPEBK_cpPGiq_1vDXET2GTCeNQ?e=2QpXCE)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ES-9QFWKEeBNqxyMv5dJe7EB5YxfTzi8v3x2Hf1aLObnAg?e=ifwPHL) room_03|2021-07-30|26.1g|128s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZfZZNphLARHl0H4zLbM_kABbwkgl5efzhVqUeia8T-adQ?e=aWHDbk)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EbcfH0djHMxCos8kfIH4i6wBBazfAOcFu6DLDSThzATf-w?e=W630hf) room_dark_01|2021-07-30|20.2g|111s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EXx8PoEtySBCvzFbYnQrFIkBDnjodZJ97_EVvXeSHW3snw?e=ZVsp9L)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ee4o6_FIKeNPqG-f2ahm7p0BPUExaiMABzHfvhj1xGRitQ?e=6IwX76) room_dark_02|2021-07-30|30.3g|165s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ERbnfghuh-NFo9W0Sev8cggBQQiTQLzjFiQy5So7j3J9tw?e=KEbKXr)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ef_CAOf_e-VLlu9xdAm2QSIBTP0B1QNm7uRG-s9EWib4hg?e=95qPDA) room_dark_03|2021-07-30|22.7g|116s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EXwiG7vYnsdKh2OotVeQKYsByEtckw39FPXiWLXBrA5kqw?e=0ZR9jg)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EXjFPcy4SrlCk5ZRvY9nGMkBzZuaSC6NVqPweU-1_OozuQ?e=E9uKVh) room_dark_04|2021-08-15|29.3g|143s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQqOn3hvPFVHin6apSr233wBJuG69N2iDPSauYQhKker4A?e=QUABfA)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EZ01sVBMNV9FloNLhb7XdeIB1bIp0GtwoxS0pXirZ9dO6A?e=KFFArd) room_dark_05|2021-08-15|33.0g|159s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ead7Ayxgh0REuN1J5SPDFFUBKMF8X3w2eGBCjOgefOs-VA?e=czasTj)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ET5ihyrgN3FCpR_i6yZeVPYBBANJ57Cq5ly44ddTOpPl7Q?e=la7ifj) room_dark_06|2021-08-15|35.6g|172s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUefMvN3g6hMos_qxocEH-4BYMFnt-yF4HxECfx3nDy81Q?e=laORp2)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ESjB6YrPnKhMuSb-hM_ZSw0BltnaLhn41H6LgexZjebNsA?e=xuEjTp)

Alternative indoors and outdoors

Figure 7. Door Sequences:A laser scanner track the robot through a door from indoors to outdoors.

Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: door_01|2021-08-04|35.5g|461s|outdoor to indoor to outdoor,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ERxIk8o_HwlAgbqJ2wwgHl8Br3uBZhyuBbxM2bG_0A6QYA?e=uQr94R)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EVgYKmnhIy9AhCC1tOOKUOYB91dEx3mGmFQ9ewLtlNDw6g?e=uylMro) door_02|2021-08-04|10.5g|127s|outdoor to indoor,short-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWCKNoEfAmxGsahwnJDYWS4BfgEPoONQKR8HAuZA4ng5eg?e=KB9PYF)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EdOFufA_mTxCoVlzcu285xoBpNQkaTaYdfL8Nd0Nad6mBQ?e=bxEbOK)

CONFIGURATION FILES

For convenience of evaluation, we provide configuration files of some well-known SLAM systems as below:

A-LOAM, LeGO-LOAM, LINS, LIO-SAM, VINS-MONO, ORB-Pinhole, ORB-Fisheye, ORB-Thermal, and CUBMAPSLAM.

Furthermore, a quantity of cutting-edge SLAM systems have been tested on M2DGR by lovely users. Here are the configuration files for ORB-SLAM2, ORB-SLAM3, VINS-Mono,DM-VIO, A-LOAM, Lego-LOAM, LIO-SAM, LVI-SAM, LINS, FastLIO2, Fast-LIVO, Faster-LIO and hdl_graph_slam. Welcome to test! If you have more configuration files, please contact me and I will post it on this website ~

DEVELOPEMENT TOOLKIT

Extracting Images

open a terminal,type roscore.And then open another,type

rosrun image_transport republish compressed in:=/camera/color/image_raw raw out:=/camera/color/image_raw respawn="true"

Evaluation

We use open-source tool evo for evalutation. To install evo,type

pip install evo --upgrade --no-binary evo

To evaluate monocular visual SLAM,type

evo_ape tum street_07.txt your_result.txt -vaps

To evaluate LIDAR SLAM,type

evo_ape tum street_07.txt your_result.txt -vap

To test GNSS based methods,type

evo_ape tum street_07.txt your_result.txt -vp

Calibration

For camera intrinsics,visit Ocamcalib for omnidirectional model. visit Vins-Fusion for pinhole and MEI model. use Opencv for Kannala Brandt model

For IMU intrinsics,visit Imu_utils

For extrinsics between cameras and IMU,visit Kalibr For extrinsics between Lidar and IMU,visit Lidar_IMU_Calib For extrinsics between cameras and Lidar, visit Autoware

Getting RINEX files

For GNSS based methods like RTKLIB, we usually need to get data in the format of RINEX. To make use of GNSS raw measurements, we use Link toolkit.

ROS drivers for UVC cameras

We write a ROS driver for UVC cameras to record our thermal-infrared image. UVC ROS driver

Star History

Star History Chart

ACKNOWLEGEMENT

This work is supported by NSFC(62073214). Authors from SJTU hereby express our appreciation.