Figure 1. Sample Images
We strongly recommend that the newly proposed SLAM algorithm be tested on our M2DGR / M2DGR-plus / Ground-Challenge / SJTU-GVI benchmark, because our data has following features:
[!TIP] Check the table of contents above for a quick overview. And check the below news for lateset updates, especially the list of projects based on M2DGR.
🔥2024/10/11
: Introducing M2DGR-benchmark, benchmarking newest SOTA LiDAR-visual SLAM alrogithms on both M2DGR and M2DGR-plus!
2024/07/15
: Introducing a list of LiDAR-Visual SLAM systems at awesome-LiDAR-Visual-SLAM, wheel-based SLAM systems at awesome-wheel-slam, and Isaac Sim resources at awesome-isaac-sim (keep updating)
2024/05/16
: Introducing a list of excellent projects based on M2DGR dataset: (keep updating)
Dataset extension: Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases (with M2DGR-Plus)from ICRA2024
Calibration: GRIL-Calib: Targetless Ground Robot IMU-LiDAR Extrinsic Calibration Method using Ground Plane Motion Constraints from RA-L2023
Survey: Resilient and Distributed Multi-Robot Visual SLAM: Datasets, Experiments, and Lessons Learned from IROS2023
I2EKF-LO: A Dual-Iteration Extended Kalman Filter Based LiDAR Odometry from IROS2024
Fast and Robust LiDAR-Inertial Odometry by Tightly-Coupled Iterated Kalman Smoother and Robocentric Voxels from TITS2024
LIVER: A Tightly Coupled LiDAR-Inertial-Visual State Estimator With High Robustness for Underground Environments from RA-L2024
LOG-LIO: A LiDAR-Inertial Odometry with Efficient Local Geometric Information Estimation from RA-L2023
Efficient 3D Deep LiDAR Odometry from T-PAMI2022
Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework for Multi-Robot Systems from RA-L2023
⭐️2024/03/05
:
A quantity of cutting-edge SLAM systems have been tested on M2DGR by lovely users. Here are the configuration files for ORB-SLAM2, ORB-SLAM3, VINS-Mono,DM-VIO, A-LOAM, Lego-LOAM, LIO-SAM, LVI-SAM, LINS, FastLIO2,Fast-LIVO, Faster-LIO and hdl_graph_slam. Welcome to test! If you have more configuration files, please contact me and I will post it on this website ~
🚀 2024/02/22
:
New paper has been accepted by ICRA2024! The dataset is M2DGR-plus and Ground-Challenge. And the algorithm code is Ground-Fusion. The preprint paper is here.
2022/06/20
:
Thanks Jialin Liu (Fudan University) for his work to test LVI-SAM on M2DGR. Check out Here for a [modified LVI-SAM version] for M2DGR.>LVI-SAM on M2DGR
⭐️2022/02/18
: We have upload a brand new SLAM dataset with GNSS, vision and IMU information. Here is our link SJTU-GVI. Different from M2DGR, new data is captured on a real car and it records GNSS raw measurements with a Ublox ZED-F9P device to facilitate GNSS-SLAM. Give us a star and folk the project if you like it.
📄 2022/02/01
: The paper has been accepted by both RA-L and ICRA 2022. The paper is provided in Arxiv version and IEEE RA-L version.
[!NOTE] If you build your open-source project based on M2DGR or test a cutting-edge SLAM system on M2DGR, please write a issue to remind me of updating your contributions.
We introduce M2DGR: a novel large-scale dataset collected by a ground robot with a full sensor-suite including six fish-eye and one sky-pointing RGB cameras, an infrared camera, an event camera, a Visual-Inertial Sensor (VI-sensor), an inertial measurement unit (IMU), a LiDAR, a consumer-grade Global Navigation Satellite System (GNSS) receiver and a GNSS-IMU navigation system with real-time kinematic (RTK) signals. All those sensors were well-calibrated and synchronized, and their data were recorded simultaneously. The ground truth trajectories were obtained by the motion capture device, a laser 3D tracker, and an RTK receiver. The dataset comprises 36 sequences (about 1TB) captured in diverse scenarios including both indoor and outdoor environments. We evaluate state-of-the-art SLAM algorithms on M2DGR. Results show that existing solutions perform poorly in some scenarios. For the benefit of the research community, we make the dataset and tools public.
Keywords:Dataset, Multi-model, Multi-scenario,Ground Robot
This work is licensed under MIT license. International License and is provided for academic purpose. If you are interested in our project for commercial purposes, please contact us on robot_yinjie@outlook.com for further communication.
If you face any problem when using this dataset, feel free to propose an issue. And if you find our dataset helpful in your research, simply give this project a star. If you use M2DGR in an academic work, please cite:
@article{yin2021m2dgr,
title={M2dgr: A multi-sensor and multi-scenario slam dataset for ground robots},
author={Yin, Jie and Li, Ang and Li, Tao and Yu, Wenxian and Zou, Danping},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={2},
pages={2266--2273},
year={2021},
publisher={IEEE}
}
@article{yin2024ground,
title={Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases},
author={Yin, Jie and Li, Ang and Xi, Wei and Yu, Wenxian and Zou, Danping},
journal={arXiv preprint arXiv:2402.14308},
year={2024}
}
Physical drawings and schematics of the ground robot is given below. The unit of the figures is centimeter.
Figure 2. The GAEA Ground Robot Equipped with a Full Sensor Suite.The directions of the sensors are marked in different colors,red for X,green for Y and blue for Z.
All the sensors and track devices and their most important parameters are listed as below:
LIDAR Velodyne VLP-32C, 360 Horizontal Field of View (FOV),-30 to +10 vertical FOV,10Hz,Max Range 200 m,Range Resolution 3 cm, Horizontal Angular Resolution 0.2°.
The rostopics of our rosbag sequences are listed as follows:
LIDAR: /velodyne_points
/camera/left/image_raw/compressed
,/camera/right/image_raw/compressed
,/camera/third/image_raw/compressed
,/camera/fourth/image_raw/compressed
,/camera/fifth/image_raw/compressed
,/camera/sixth/image_raw/compressed
,/camera/head/image_raw/compressed
GNSS Ublox M8T:
/ublox/aidalm
,
/ublox/aideph
,
/ublox/fix
,
/ublox/fix_velocity
,
/ublox/monhw
,
/ublox/navclock
,
/ublox/navpvt
,
/ublox/navsat
,
/ublox/navstatus
,
/ublox/rxmraw
/thermal_image_raw
/camera/color/image_raw/compressed
,/camera/imu
/dvs/events
,/dvs_rendering/compressed
/handsfree/imu
We make public ALL THE SEQUENCES with their GT now.
Figure 3. A sample video with fish-eye image(both forward-looking and sky-pointing),perspective image,thermal-infrared image,event image and lidar odometry
An overview of M2DGR is given in the table below: Scenario|Street|Circle|Gate|Walk|Hall|Door|Lift|Room|Roomdark|TOTAL –|:–|:–:|–:|–:|–:|–:|–:|–:|–:|–: Number | 10|2|3|1|5|2|4|3|6|36 Size/GB|590.7|50.6| 65.9|21.5| 117.4 |46.0|112.1|45.3|171.1|1220.6 Duration/s |7958 | 478| 782 |291 |1226|588|1224|275|866|13688 Dist/m |7727.72| 618.03| 248.40|263.17|845.15|200.14|266.27|144.13|395.66|10708.67 Ground Truth |RTK/INS |RTK/INS |RTK/INS |RTK/INS |Leica |Leica |Leica |Mocap|Mocap| —
Figure 4. Outdoor Sequences:all trajectories are mapped in different colors.
Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: gate_01|2021-07-31|16.4g|172s|dark,around gate|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ET3mU1rvdTpEl8VYvC25q7YB5pmPQlwru0jBbQ9iu0oAMA?e=LrKUpJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfipLVtlRChHvwklkDPylPgBSIQry0_JdfqH-6DaxWCaNA?e=idVsY4) gate_02|2021-07-31|27.3g|327s|dark,loop back|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EY7fHSh4NnxBvemze1JS8TEBy5beLh_xlJ6mdi2IYmeY9w?e=xIcvDe)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETaXuADPMrNKlFn6pI9aqeoBmcgHr86fIsvDBB6cSaTBLA?e=gzaHPW) gate_03|2021-08-04|21.9g|283s|day|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUthdjvVIVdFmFxR82jzVqUBQTpsfvvb26pYtb0yj-_hlw?e=6MWwmJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETj90pEu4PBDpYIoI0nWEAMBiWU68VXMXpU7MKwWnpdXxA?e=1KLdX3) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: Circle_01|2021-08-03|23.3g|234s|Circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUVwex_LapBFrWV4ZtXocoYBE29aoQkPVdwWGhSFcioEtQ?e=YRRV9L)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EUlLxD27cGFArKGnpwkGrgEBr9FVGaSojLGVhJSNKaLLqQ?e=Bkptlj) Circle_02|2021-08-07|27.3g|244s|Circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EeVG96IFCfxDlDLH8xefa3EBEMjCm4_8__V8JZ4ivMGoww?e=FVgjhB)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfVe45nxzepBsZSFp-yzqRMBpg_PYdZVS1L3FOYqA8WdcA?e=5BcVrA) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: street_01|2021-08-06|75.8g|1028s|street and buildings,night,zigzag,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EavjoipiTMRIjUvmodSGGsoB8rg0_pOkp6pqDScr8h4zvQ?e=OjtWkL)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ES2todVoF5VGmLo8WwKxcRYB4nyw6-zNR86I4BxAPnv_wg?e=ZtalWi) street_02|2021-08-03|83.2g|1227s|day,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQj5QBBHONpFj-hlvXOQBr0BM0NP9nhNuw-X9UtwOMMuNw?e=ZrxudN)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfOmlQh5BvJAorfLiI7orFgBJRR94rEjU163lvWgLAlA2Q?e=Z7mAcd) street_03|2021-08-06|21.3g|354s|night,back and fourth,full speed|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQU95R6TOAZIkaoFuHJLU-kB9qJEIDeEsECB3Gjc9Nmx8A?e=J1AKwY)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQ4l4FNo69dPjWco2Pk8Zy4BuPWTFUGQHOv2KdO4MbTv2g?e=ZZf9ok) street_04|2021-08-03|48.7g|858s|night,around lawn,loop back|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ea72BxSXFYhDrp_FGNlJ2ukBx3CQSlv0Wah5nFUJtIntrw?e=4rwi7H)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EadWM6nH74hBusYGre63WRcB0fM_ynkFJu2ibpSWtr5P-w?e=K7FJzV) street_05|2021-08-04|27.4g|469s|night,staight line|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUClV6vL2zhAicOwwO1WiroBK-fPzTu8K8NtMfgdMAxIqw?e=r50mNo)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYrYgnp716xKo0-wcyVX2Z4BTnbbZuQrwYgaJIzREs923Q?e=gcGt7I) street_06|2021-08-04|35.0g|494s|night,one turn|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZ4HAXvNQXRCgRKSLpE3yX0BsM24PkXwAd-NopVc7ueNzA?e=oUw91h)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETFW7vEEmp9JvJiVZef0wooBN9r7mt8jj1WmVdzzNiIp7A?e=67FHW4) street_07|2021-08-06|77.2g|929s|dawn,zigzag,sharp turns|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfScTXrKjAdGg1w9xZ-yZgIBWu9gIswakQToN9guMPatQQ?e=YvjAUg)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EefcYHlgA-RJiTl1jZl9r4ABr2YcrmTX7InDG_W6cHHrFQ?e=NQB203) street_08|2021-08-06|31.2g|491s|night,loop back,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EdgojePkM2ZNszS6JM80D90B-2q68wWQ1vZijzeaH-IQrw?e=iwVIiX)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ecv4IRMW5rBPn22pxW-xEYQBGinyVxrP6htbpS3HGnOpiA?e=TJXzJz) street_09|2021-08-07|83.2g|907s|day,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ee5hiGAdou5OvPI_xeOHBh4BtRntB8-5qLXqCuXhXNB-Yw?e=wEkptw)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EXb__m3Z0wdLkv_ybnXDOlUBVV41XM8_G1yHNO9oZKJE1w?e=xaZBGo) street_010|2021-08-07|86.2g|910s|day,zigzag|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfcpNeq8p-NLp7kCkaz0WugBf1c9TGtDbVBDy2QHF5rPvQ?e=lpnnAJ)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ETWkYfjfaP5PuMUJmbHsLS0Btby-9W7V9n4bfob9DGP-pw?e=iOGOBW) walk_01|2021-08-04|21.5g|291s|day,back and fourth|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZn2REI4E2BLurJXTaTDpYcBIMOoO3CKh9dsPbcMeMYTKg?e=R4cSKy)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfNamQlwIeRGl0-gjktD1UEBMpXSWScVLL7VL1WUPiInhw?e=zmbJNp)Figure 5. Lift Sequences:The robot hang around a hall on the first floor and then went to the second floor by lift.A laser scanner track the trajectory outside the lift
Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: lift_01|2021-08-04|18.4g|225s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZp-yCPxrxNBg5cM_aWualABVCNktGm29u0RA2UGVmyp2Q?e=BChvEN)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQkO6B_IDPtItavRTjwedkoBQDUc6vV2jqtkOsmnWL7lhw?e=dDNVaE) lift_02|2021-08-04|43.6g|488s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfXP5V6Yi3tEvQL-Gbaq4QcBEVNxqacC-tltlzYnFnW7zQ?e=vgyEzS)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EX9iTyrQjWpKu9dI0Vx9uUkBAeLjUuU-PwUVT4yl1Tit1Q?e=toxiWg) lift_03|2021-08-15|22.3g|252s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWWG7OgCmTpIj_VZixYTkzsBew8ONoMrI13acbZ_8svV3g?e=1OVDYA)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EQgymOgmbiVDt8NPcb-HiYoBUKkfzJZeJnKZdOvAXMgWtA?e=mzM6kq) lift_04|2021-08-15|27.8g|299s|lift|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ETrPaBIVaV1EtTVUG9effPIBK1LiJ3pGK93jAdhLZU_Pjg?e=ekVtWl)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYgfjuI3fZ9AsjGH1jKwwqcBlXsaRaEZ9TS8Y1VHlTpyCw?e=0fMc5n) Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: hall_01|2021-08-01|29.1g|351s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWQ2bcxWRgZLtK_eSIgnNmoB_ozAyXeEU_MmlVqPZeiB7Q?e=BKghlK)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EYxqt8qdK2hCgzW7qoQQWEIBvWgJAC7rotStNWxiEXDigg?e=lJabX7) hall_02|2021-08-08|15.0g|128s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EaAEMKhvsgJCn0bSvlNOENkB-jVOOH4gxrxATSCbwPdUng?e=xCXoXE)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EWybRtZdpVhBtfPbB4PlvigBNXjgmp8PzHbcMBqUA2ivhA?e=WRoQN9) hall_03|2021-08-08|20.5g|164s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWyFq_niW4xIkk9pg2tLVfMBfT9JaC0ZUa0CogD6sND6Ew?e=ODUNxq)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EVL6pWtJ0yVNgDkZLYonkrMBcVAVN8pO2F5Kdh5tSh9fdg?e=nGDMba) hall_04|2021-08-15|17.7g|181s|randon walk|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EV0oYa2MNi1HqmhvCM1pbboBAqQlij03bPifdyd_cqZUDA?e=P56O61)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EUrqpdjawd9HgF7aVQxYL_cBKIye_pFquj3tobdSnj_H2w?e=iAEG0u) hall_05|2021-08-15|35.1g|402s|circle|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQRFrzmO2BxFmeAZV_ifTpsBJjdIM7XjQAnmnuDdhE9-Vg?e=WDZwUt)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EfuK4fEcs0JEtXGNWjEVI9UB9qHZjd7Y4WAs9XLZgmA4hQ?e=zQrXDW)Figure 6. Room Sequences:under a Motion-capture system with twelve cameras.
Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: room_01|2021-07-30|14.0g|72s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EfG372xf9h9Dl0xjm5XcDgoB7JP0SsWJfAfpfO2CU-QOmw?e=XINjaC)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ER6DA9bugPZNphRXA-zT_8QB4Hj0r0564NXknXHrlWuEcg?e=SlLMZM) room_02|2021-07-30|15.2g|75s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EaVK6tu2gs5NnOpAhhWrTPEBK_cpPGiq_1vDXET2GTCeNQ?e=2QpXCE)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ES-9QFWKEeBNqxyMv5dJe7EB5YxfTzi8v3x2Hf1aLObnAg?e=ifwPHL) room_03|2021-07-30|26.1g|128s|room,bright|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EZfZZNphLARHl0H4zLbM_kABbwkgl5efzhVqUeia8T-adQ?e=aWHDbk)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EbcfH0djHMxCos8kfIH4i6wBBazfAOcFu6DLDSThzATf-w?e=W630hf) room_dark_01|2021-07-30|20.2g|111s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EXx8PoEtySBCvzFbYnQrFIkBDnjodZJ97_EVvXeSHW3snw?e=ZVsp9L)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ee4o6_FIKeNPqG-f2ahm7p0BPUExaiMABzHfvhj1xGRitQ?e=6IwX76) room_dark_02|2021-07-30|30.3g|165s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ERbnfghuh-NFo9W0Sev8cggBQQiTQLzjFiQy5So7j3J9tw?e=KEbKXr)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/Ef_CAOf_e-VLlu9xdAm2QSIBTP0B1QNm7uRG-s9EWib4hg?e=95qPDA) room_dark_03|2021-07-30|22.7g|116s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EXwiG7vYnsdKh2OotVeQKYsByEtckw39FPXiWLXBrA5kqw?e=0ZR9jg)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EXjFPcy4SrlCk5ZRvY9nGMkBzZuaSC6NVqPweU-1_OozuQ?e=E9uKVh) room_dark_04|2021-08-15|29.3g|143s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EQqOn3hvPFVHin6apSr233wBJuG69N2iDPSauYQhKker4A?e=QUABfA)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EZ01sVBMNV9FloNLhb7XdeIB1bIp0GtwoxS0pXirZ9dO6A?e=KFFArd) room_dark_05|2021-08-15|33.0g|159s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/Ead7Ayxgh0REuN1J5SPDFFUBKMF8X3w2eGBCjOgefOs-VA?e=czasTj)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ET5ihyrgN3FCpR_i6yZeVPYBBANJ57Cq5ly44ddTOpPl7Q?e=la7ifj) room_dark_06|2021-08-15|35.6g|172s|room,dark|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EUefMvN3g6hMos_qxocEH-4BYMFnt-yF4HxECfx3nDy81Q?e=laORp2)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/ESjB6YrPnKhMuSb-hM_ZSw0BltnaLhn41H6LgexZjebNsA?e=xuEjTp)Figure 7. Door Sequences:A laser scanner track the robot through a door from indoors to outdoors.
Sequence Name|Collection Date|Total Size|Duration|Features|Rosbag|GT --|:--|:--:|--:|--:|--:|--: door_01|2021-08-04|35.5g|461s|outdoor to indoor to outdoor,long-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/ERxIk8o_HwlAgbqJ2wwgHl8Br3uBZhyuBbxM2bG_0A6QYA?e=uQr94R)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EVgYKmnhIy9AhCC1tOOKUOYB91dEx3mGmFQ9ewLtlNDw6g?e=uylMro) door_02|2021-08-04|10.5g|127s|outdoor to indoor,short-term|[Rosbag](https://sjtueducn-my.sharepoint.com/:u:/g/personal/594666_sjtu_edu_cn/EWCKNoEfAmxGsahwnJDYWS4BfgEPoONQKR8HAuZA4ng5eg?e=KB9PYF)|[GT](https://sjtueducn-my.sharepoint.com/:t:/g/personal/594666_sjtu_edu_cn/EdOFufA_mTxCoVlzcu285xoBpNQkaTaYdfL8Nd0Nad6mBQ?e=bxEbOK)For convenience of evaluation, we provide configuration files of some well-known SLAM systems as below:
A-LOAM, LeGO-LOAM, LINS, LIO-SAM, VINS-MONO, ORB-Pinhole, ORB-Fisheye, ORB-Thermal, and CUBMAPSLAM.
Furthermore, a quantity of cutting-edge SLAM systems have been tested on M2DGR by lovely users. Here are the configuration files for ORB-SLAM2, ORB-SLAM3, VINS-Mono,DM-VIO, A-LOAM, Lego-LOAM, LIO-SAM, LVI-SAM, LINS, FastLIO2, Fast-LIVO, Faster-LIO and hdl_graph_slam. Welcome to test! If you have more configuration files, please contact me and I will post it on this website ~
roscd image_view
rosmake image_view
sudo apt-get install mjpegtools
open a terminal,type roscore.And then open another,type
rosrun image_transport republish compressed in:=/camera/color/image_raw raw out:=/camera/color/image_raw respawn="true"
We use open-source tool evo for evalutation. To install evo,type
pip install evo --upgrade --no-binary evo
To evaluate monocular visual SLAM,type
evo_ape tum street_07.txt your_result.txt -vaps
To evaluate LIDAR SLAM,type
evo_ape tum street_07.txt your_result.txt -vap
To test GNSS based methods,type
evo_ape tum street_07.txt your_result.txt -vp
For camera intrinsics,visit Ocamcalib for omnidirectional model. visit Vins-Fusion for pinhole and MEI model. use Opencv for Kannala Brandt model
For IMU intrinsics,visit Imu_utils
For extrinsics between cameras and IMU,visit Kalibr For extrinsics between Lidar and IMU,visit Lidar_IMU_Calib For extrinsics between cameras and Lidar, visit Autoware
For GNSS based methods like RTKLIB, we usually need to get data in the format of RINEX. To make use of GNSS raw measurements, we use Link toolkit.
We write a ROS driver for UVC cameras to record our thermal-infrared image. UVC ROS driver
This work is supported by NSFC(62073214). Authors from SJTU hereby express our appreciation.